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Foreword

This is a �rst written version of the contribution �Characterizing the Power and the Limitations
of Concepts for Adaptivity and Personalization by Benchmark Results from Inductive Inference�
by Klaus P. Jantke, Sebastian Drefahl and Oksana Arnold recently presented at the international
conference ISIP 2018, May 14/15, 2018, in Fukuoka, Japan.

The authors have been invited to submit a version to a book of selected papers to be published
within the series CCIS of Springer Verlag, in which every submission of a chapter is limited to
15 pages of LNCS format.

Because of the complexity of the authors' results, especially constructions and proves relying
on Kleene's s-m-n theorem and on the recursion theorem (see [Rj 1967]), on the one hand, and
the intriguing interdigitation of di�erent disciplines involved, on the other hand, this page limit
is considered inappropriate.

In response, the authors of the contribution decided to write an extended version containing
some essentials that would be missing in a manuscript limited to 15 Springer LNCS pages.
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Überhaupt hat der Fortschritt das an sich,
daÿ er viel gröÿer ausschaut, als er wirklich ist. 1

[ Johann Nepomuk Nestroy, �Der Schützling�, 1847 ]

1 Introduction

In Computer Science and Technology, in general, and in Arti�cial Intelligence, in particular,
innovations are mushrooming. At least, authors say so.

There is no doubt at all, digitalization pervades nearly every sphere of life. Humans are facing
more and more digital systems at their workplaces, in everyday education, in their spare time,
and in health care. With the US Food & Drug Administration's approval of aripriprazole tablets
containing sensors in November 2017, digitalization reaches the inside of the human body.

Frequently, the process of digitalization is placing on humans the burden of learning about
new digital systems and how to use them appropriately. More digital systems do not necessarily
ease the human life. To use them e�ectively, users need to become acquainted with software tools,
have to understand the interfaces and have to learn how to wield the tools. This bears abundant
evidence of the need for a paradigmatic shift from tools to intelligent assistant systems, an
issue discussed by the authors in earlier publications such as [JGL 2003], [JIS 2005], [JM 2005],
[JSSB 2005], [JIS 2007], [JM 2007], [Jan 2011], [Jan 2013], [Jan 2016b], [Jan 2016a], [Jan 2018],
and others over a period of more that one and a half decades.

A digital assistant tries to understand its human user for the sake of adaptation. Intelligent
digital assistant systems are, by nature, learning systems.

The authors are working on concept development, on implementation and on application of
intelligent assistant systems in varying areas. These assistant systems are aiming at advanced
user models on the level of theories of mind. Based on these models, digital assistant systems
�believe in understanding users�, personalize themselves accordingly and adapt in di�erent ways.

However to adapt, everything depends on the hypothesized theories of mind that are induced
from subsequent observations of human-computer interaction. In other words, theories of mind
are learned inductively.

Throughout the process of concept development, design, implementation, and application,
ideas of inductive learning are continuously emerging. In conditions of software and commu-
nication structures as well as programming languages, the essentials of ideas are incrusted by
syntactic sugar. It is di�cult to separate the wheat from the cha�.

According to [Lak 1987], basic concepts2 are transcendental. They may occur in largely
varying areas. The authors take this point of view as a launch pad for an endeavor of mapping
learning concepts that occur in system design and implementation to theoretical concepts in
recursion-theoretic inductive inference. The mapped concepts are investigated and compared to
each other by means of well-established research methods and technologies.

This results in in�nite hierarchies of learning concepts characterizing the di�erent power and
limitations of varying practical approaches.

1English: �In the main it is a quirk of progress to appear bigger than it really is.�
2Possibly, some of them may be seen as memes according to Dawkins' seminal book [Daw 1976]. This would

allow for bridging the gap to memetic software technologies [Tan 2003], an issue beyond the limits of this report.
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2 Characteristics of the Contribution

The paper presentation at ISIP 2018 was delivered by the second author. The stepwise appear-
ance of the presentation title as on display in �g. 1 reveals the characteristics of the contribution.
The work is application-oriented.

Figure 1: Stepwise Unfolding of the Authors' Title Slide of their ISIP 2018 Presentation

Concepts for Adaptivity and Personalization are in focus. Because the authors' approach is a
novelty, it raises the key question for its Power and Limitations. To arrive at precise as well as
clear answers of mathematical strength, the authors adopt and adapt a series of techniques and
Results of Benchmarking in Inductive Inference.

Invoked concepts of inductive inference are found in publications such as [JB 1981], [AS 1983],
and [JORS 1999].

3 Motivation

There are�four, at least�mutually related motivations underlying this approach, its presentation
and its publication.

First of all, the authors would like to take up the cudgels for the paradigmatic shift from a
�ood of software systems to intelligent digital assistant systems. This brings with it the need for
personalization and for context adaptivity by systems that learn.

Second, when speaking about systems that learn, the authors' intention is to propagate theory
of mind modeling and induction. Theories of mind are of an enormous expressiveness beyond
the limits of conventional user modeling such as overlay models in technology enhanced learning.

Third, it is the authors' intention to demonstrate the utility of benchmarking by means of
recursion-theoretic inductive inference. Classes of recursive functions can sharply discriminate
between two di�erent learning concepts. Benchmarks tell, so to speak, what makes a di�erence.

Fourth, the authors�in a few of their projects, at least�aim at sophisticated theory induction
without the need to program sophisticated learning algorithms. How does that work? Roughly
speaking, there is one almost trivial learning algorithm deployed: identi�cation by enumeration.
The art, so to speak, is to provide suitable spaces of hypotheses. Then, learning is performed by
a logic programming engine.
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4 Theories of Mind for Intelligent System Assistance

The present authors have introduced theory of mind modeling and induction as an approach to
human user modeling [Jan 2012b, Jan 2012a] of an unprecedented expressiveness [Jan 2016a].
A few application case studies as in [JSS 2016] and [ADFJ 2017] demonstrate the conceptual
superiority in comparison to conventional approaches.

4.1 Theories of Mind in Behavioral Studies

The term theories of mind names a quite well-established concept of behavioral studies [CS 1996].
As sketched earlier by the authors in [AJ 2018], there is much evidence that certain animals

re�ect about intentions and behaviors of other animals [EDC 2004, EC 2009]. Birds of the species
Aphelocoma californica � the Western scrub jay, esp. the California scrub jay � are food-caching.
They do not only cache food, but also colorful and shiny objects such as plastic toys. In case
such a bird, let's name it A, is caching food or other treasures and if it is watched by another
bird of its species, we name it B, then�with high probability�A returns shortly after to unearth
the treasures cached before. The interpretation is, loosely speaking, that the bird A �thinks�
about the possibly �malicious thoughts� of the bird B. Bird A builds its own theory of mind.
More generally speaking, thinking about another one's thoughts means to build a theory of mind.

4.2 Theories of Mind in Arti�cial Intelligence

The two reports [Jan 2012b] and [Jan 2012a] are intended to carry over the theory of mind
conceptualizations from behavioral studies in animals to Arti�cial Intelligence (AI). Digital agents
A shall be enabled to build theories of mind about their human users denoted by B.

Apparently, this is an issue of user modeling. From a methodological point of view, modeling
a human user by generating hypothetical theories of mind is a case of theory induction.

Theories are collections of statements expressed in a certain language as known, by way of
illustration, from physics. [Pop 1934] discusses essentials of theory induction and provides a �rm
methodological basis of user modeling by means of theories of mind.

When a digital agent A �tries to understand� a human user B, it forms hypothetical theories.
Every particular theory is a user pro�le. In the course of human-computer interaction (HCI),
human user pro�les evolve over time. This appears, when seen from the process perspective,
as inductive modeling as well as, when seen from the data perspective, as mining HCI data
[AJ 2018].

The above-mentioned reports introduce theories of mind to AI by means of a digital games
case study that is documented in detail in another report [Jan 2016b] a few years later. Before,
the digital game Gorge underlying this study has been used for varying research purposes as in
[Jan 2010] and [JHLN 2010]. Carrying on the earlier studies, [JSS 2016] is paving the road for
theory of mind learner modeling.
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4.3 Theories of Mind Modeling and Induction

As said very recently, �data mining is a creative process of model formation based on incomplete
information. In brevity, data mining is inductive modeling� (see [AJ 2018], section 3). As an
immediate serious consequence, data mining results are only hypothetical. As George E. P. Box
put it nicely, �all models are wrong, but some are useful� (see, e.g., [BD 1987], p. 424).

Figure 2: Inductive Modeling as a Process over Time (from [AJ 2018])

This lead the present authors to a re�ned model of data mining that stresses the feature of
induction, because �the thinking about emerging sequences of hypotheses is badly underestimated
in contemporary data mining investigations. Pondering model concepts is not su�cient. We need
to put emphasis on the investigation of suitable spaces of model hypotheses� (ibid., page 50).

Within the framework of the author's present approach, models are theories. And the models
are human user pro�les or, vice versa, user pro�les are models.

Because user models are digital, the statements that constitute a theory, i.e., a user pro�le,
must adhere to certain rules of syntax. In terminology of logics, there is an underlying signature
of the logical language in use. The signature determines a language of logic such that (sets of)
logical formulas may be used to explain a human user's behavior. As said before, explanations
are hypothetical. Under the assumption of a particular logic, a digital assistant observing a
human user's behavior collects observations and tries to �nd explanations in logical terms. In
applications such as [JSS 2016], there exists a �xed space of logical theories. The learning system
searches this space of hypotheses to �nd the �rst one consistent with the system's observations.
To deal with more complex applications, [ADFJ 2017] introduce the dynamic generation of spaces
of hypotheses. The dynamics is further generalized by [ADF+ 2017] introducing what is called
NUM∗part below. This generalization goes as far as possible.

Varying ideas, concepts, and implementations of user modeling by means of theory of mind
induction are encrusted by large amounts of software-technological details. It is rather di�cult to
compare alternative approaches and to assess their possibly di�erent power and limitations. This
contribution aims at a clari�cation by stripping ideas of algorithmic learning to the essentials.
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5 Concepts of Inductive Inference

The present section provides the technicalities to relieve the key ideas and concepts of [JSS 2016],
[ADFJ 2017], and [ADF+ 2017] from, so to speak, the syntactic sugar encrusting them. In terms
of recursion theory, the essentials become clear and considerably easy to compare and to assess.

5.1 Notions and Notations

[Rj 1967] is our standard reference for notions and notations of recursion theory. The usage in
inductive inference is similar to [JB 1981], [AS 1983], and [JORS 1999].
Pn is the class of all n-ary partial recursive functions over the set of natural numbers IN . For

any function f ∈ P1 and for any argument x ∈ IN , the notation f(x)↓ indicates that f is de�ned
on x. Rn denotes the subclass of all fully de�ned functions called general recursive. Learners are
functions L ∈ P1. Any function f ∈ R1 is given by its graph f(0), f(1), . . . where f [n] encodes
the sample from f(0) to f(n). Given a Gödel numbering ϕ of P1, a learner gets fed in data
f [0], f [1], [2], f [3], . . . and generates sequences of hypotheses h(n) = L(f [n]) in response. Such
a hypothesis is interpreted as a program for the function ϕh(n). L learns f , if and only if the
hypotheses converge to a correct program for f . The family of all function classes learnable in
this way is denoted by EX and all functions L can learn form a class named EX(L).

5.2 Conventional Concepts

More formally, assume any function class C ⊆ R1. C belongs to EX, if and only if there
exists some learner L ∈ P1 satisfying the conditions [i], [ii], and [iii] in the following de�nition:
∀f ∈ C ∀n ∈ IN ( [i] L(f [n]) ↓ ∧∃k ∈ IN ∀m ∈ IN ( [ii] ( k ≤ m → L(f [k]) = L(f [m]) ) ∧
[iii] ϕL(f [m]) = f )

The de�nition of EX is a bit restrictive, because information is fed in to the learner in
the �xed standard order of natural numbers. To generalize, consider arbitrary arrangements
X = {x0, x1, x2, x3, . . . } with the only requirement that every element of IN occurs at least
once. X denotes the set of all those orderings3. For any X ∈ X , the information sequence from
(x0, f(x0)) to (xn, f(xn)) is encoded by fX [n]. The above de�nition of EX is easily generalized
to EXarb by substituting fX for f in the formula ∀f ∈ C ∀X ∈ X ∀n ∈ IN (. . . ) as above.

For completeness of this treatment: ∀f ∈ C ∀X ∈ X ∀n ∈ IN (L(fX [n])↓ ∧ ∃k ∈ IN ∀m ∈
IN ( ( k ≤ m → L(fX [k]) = L(fX [m]) ) ∧ ϕL(fX [m]) = f ). It is folklore in inductive inference
that EXarb = EX.

Initially, Gold studied inductive inference of formal languages [Gol 1967]. His approach and
his �rst results attracted astonishing attention [Joh 2004]. Among his key contributions is the
principle of identi�cation by enumeration. Inductive inference of recursive functions allows for a
particularly transparent explanation.

Assume any total recursive function h ∈ R1 used as an enumeration of some function class
P1
h = {ϕh(i)}i∈IN . Furthermore, assume that all functions ϕh(i) are general recursive. In P1

h, the
term R1

h denotes the subset of all total functions. Thus, the latter assumption may be rewritten
to P1

h = R1
h. Under these assumptions the following learner LIdbyEnh is able to learn all functions

of R1
h according to EX. µ denotes the minimum operator.
LIdbyEnh (f [n]) := h(µm[ϕh(m)[n] = f [n] ])

3Notice that X is uncountably in�nite. It is of the same size as the set of real numbers.
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In another more precise terminology, it holds R1
h = EX(LIdbyEnh ). It is obvious that Gold's

principle works for arbitrary arrangements X ∈ X as well; just the formula is more cumbersome.
LIdbyEnh (fX [n]) := h(µm[ϕh(m)X [n] = fX [n] ])

Consequently, R1
h = EXarb(LIdbyEnh ). The abbreviation NUM denotes the family of all classes

of general recursive functions contained in an enumeration as above. In a slightly more formal
terminology, C ⊆ R1 belongs to NUM, if and only if ∃h ∈ R1 (C ⊆ P1

h = R1
h ⊆ R1 ).

Here are two examples of function classes contained in NUM. The functions they contain are
called functions of �nite support. Except �nitely many so-called points of support, they return
always the value 0.

C�n-supp = { f | f ∈ R1 ∧ ∃n ∈ IN ∀x ∈ IN(n ≤ x→ f(x) = 0) }
Cinit-supp= { f | f ∈ R1 ∧ ∃n ∈ IN ∀x ∈ IN(n ≤ x↔ f(x) = 0) }
Every enumeration h generates some space of hypotheses. When information f [n] or fX [n],

respectively, is provided, the learner LIdbyEnh searches for the �rst hypothesis in the enumeration
that is consistent with this information. Formal terms describing consistency are ϕh(m)[n] = f [n]
and ϕh(m)X [n] = fX [n], resp. In recent applications such as human-computer co-operative
knowledge discovery [ADFJ 2017], the authors consider consistency to be a necessity.

The appreciation for consistency leads to some re�nements of EX and EXarb.
Identi�cation by enumeration as above succeeds, because consistency is a recursively decidable

property. And this key property is decidable, because h enumerates only general recursive
functions. So, what about computable learners that generate only general recursive hypotheses,
but possibly in a di�erent way?

TOTAL and TOTALarb are two families of function classes de�ned like EX and EXarb before
with the additional demand on the learner L to always satisfy ϕL(f [n]) ∈ R1 or ϕL(fX [n]) ∈ R1,
resp., for any f and n (and X, when it applies).

By de�nition, NUM ⊆ TOTAL ⊆ EX and NUM ⊆ TOTALarb ⊆ EXarb. Due to [JB 1981],
e.g., we know TOTAL = TOTALarb as well as NUM ⊂ TOTAL ⊂ EX.

This leads to the following research question that has been left open so far.
How does a learner function operationally, if it generates general recursive hypotheses ex-

clusively, but deals with learning problems beyond the limits of NUM . . . ? Practically, how to
implement such a learner . . . ?

Apparently, the generation of only general recursive function hypotheses is su�cient to decide
consistency. But is it necessary as well?

The answer is found by introducing the requirement of consistency into the de�nitions of EX
and EXarb. After the terms L(f [n])↓ and L(fX [n])↓, one inserts into the corresponding formula
the new requirement ϕL(f [n])[n] = f [n] or ϕL(fX [n])X

[n] = fX [n], respectively. The families

of classes of general recursive functions learnable consistently are named CONS and CONSarb.
Accordingly, the class of functions learnable by L is CONS(L) resp. CONSarb(L).

The proper set inclusions TOTAL ⊂ CONSarb ⊂ CONS ⊂ EX are known [JB 1981].
This is by far not the end of dealing with consistent learning. Readers may have noticed that

in inductive inference, a learner can hardly be sure that the job is done. By way of illustration,
consider the example function class C�n-supp. When getting fed in the data f(0), f(1), f(2),
f(3), f(4), f(5), . . . , the learner can not know whether or not it has already seen the �nal point
of support. In contrast, when learning functions from Cinit-supp, the occurrence of the �rst value
0 clearly indicates that su�cient information is provided. In a certain sense, the class Cinit-supp

is simpler than C�n-supp.
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When learning functions from Cinit-supp, a learner is able to decide e�ectively when the
job is done. This is expressed by means of an add-on requirement to condition [ii] in the
de�nition of EX and EXarb. There exists some δ ∈ P1 that is de�ned on f [n] or on fX [n], resp.,
exactly if L is de�ned. δ decides termination of the learning process by meeting the requirement
( δ(f [n]) = 1↔ k ≤ n ) or ( δ(fX [n]) = 1↔ k ≤ n ), resp. The corresponding families of function
classes are FIN and FINarb. Trivially, it holds FIN = FINarb [JB 1981].

Classes of total recursive functions such as C�n-supp serve as benchmarks for discriminating
varying principles of inductive learning. C�n-supp ∈ NUM \ FIN tells, so to speak, half of the
story about the relationship between NUM and FIN.

Figure 3: Hierarchy of Selected Principles of Inductive Learning

For the counterpart, another benchmark class is necessary. So-called quines4 and quine-like
functions may be used conveniently. The basic benchmark class of general recursive functions is
C0
q-like = { f | f ∈ R1 ∧ ∀x ∈ IN(f(x) > 0) ∧ ϕf(0) = f }.
For getting an impression of the abundance of C0

q-like, assume an arbitrary unary general
recursive function g ∈ R1. Let us de�ne in a uniform and e�ective way a sequence of functions
{ψi}i∈IN as follows.

ψi(x) =

{
i if x = 0
g(x− 1) otherwise

Intuitively, every function ψi has an identi�er at poistion 0 followed by the full graph of
function g.

By Kleene's s-m-n theorem, the sequence {ψi}i∈IN may be e�ectively translated into any
Gödel numbering ϕ. In formal terms, there exists some c ∈ R1 such that ψi = ϕc(i) holds for
all i ∈ IN . Next, one applies the recursion theorem to the compiler function c ∈ R1. According
to this theorem, there exists some �xed point n ∈ IN with the property ϕn = ϕc(n).

For every �xed point n, the function ϕn = ϕc(n) = ψn apparently belongs to the class C0
q-like,

because its value at position 0 is an index of the function in ϕ.
Furthermore, notice two important corollaries from the proof of the recursion theorem [Rj 1967].

Every function in R1 (a) has in�nitely many �xed points and (b) the set of �xed points is not
e�ectively enumerable. Though this is folklore in recursion theory, it helps to get an idea of the
abundance of C0

q-like.
To sum up, any computational behavior represented by a general recursive function occurs in

the graph of some quine-like function. Moreover, it occurs in in�nitely many of these functions
that form a class being so complex that it is beyond the limits of e�ective enumerability.

Thus, C0
q-like is not e�ectively enumerable and it follows C0

q-like ∈ FIN \ NUM.

4Quines � named after the philosopher Willard Van Orman Quine � are self-replicating programs; the web is
full of quines such that further details may be dropped here [Tho 1999].
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5.3 Dynamic Identi�cation by Enumeration

For human player modeling by theories of mind as studied in [JSS 2016], the simple principle of
identi�cation by enumeration works well. In contrast, more ambitious tasks of human-computer
collaboratory knowledge generation as in [ADFJ 2017] lead to situations in which the expressive
limits of a single enumeration are exceeded.

The authors invented what they call dynamic identi�cation by enumeration. [ADF+ 2017],
section 9.3, p. 80, contains what is called NUM∗ below. Beyond the limits of a single enumeration
h, the novel key idea is to generate enumerations on demand. For this purpose, an extra generator
function γ ∈ P1 is introduced. There are three practically motivated requirements of operational
appropriateness, conversational appropriateness, and semantic appropriateness (ibid., section 8.3,
pp. 75/76; see also section 9.3, p. 80). Now, these concepts will be rephrased in terms of
recursion theory. Beyond [ADF+ 2017], the present treatment provides a novel in�nite hierarchy
exhausting NUM∗.

For a lucid comparison, recall the original concept of learning recursive functions by means
of identi�cation by enumeration on a given enumeration h:
LIdbyEnh (fX [n]) := h(µm[ϕh(m)X [n] = fX [n] ])

Instead, generator γ provides � in response to an observation � an ad hoc enumeration deemed
appropriate. For given data fX [n], γ(fX [n]) is an index of the generated enumeration and
ϕγ(fX [n]) is the enumeration itself. The hypotheses enumerated are ϕϕγ(fX [n])(0), ϕϕγ(fX [n])(1),
ϕϕγ(fX [n])(2), ϕϕγ(fX [n])(3), ϕϕγ(fX [n])(4), and so on.

LIdByEnγ (fX [n]) := ϕγ(fX [n])(µm[ϕϕγ(f [n])(m)X
[n] = fX [n] ])

This speci�cation of the learner looks as before. The only di�erence is that the formerly static
enumeration h is now replaced by a dynamically generated enumeration ϕγ(fX [n]) in response to
observed data fX [n].

To work e�ectively, γ has to obey the criteria of appropriateness above. For readability, the
EX-type de�nition comes �rst. For brevity, a notation is adopted and adapted from [Gri 2008].
For any C ⊆ R1, the term [C] = {f [n] | f ∈ C ∧ n ∈ IN} denotes the set of all initial segments
of functions. ∀f ∈ C ∀n ∈ IN ( γ(f [n]) ↓ ∧ ϕγ(f [n]) ∈ R1 ∧ P1

γ(f [n]) ⊆ R
1 ∧ f [n] ∈ [P1

γ(f [n])] )
speci�es the operational appropriateness necessary for e�ective identi�cation by enumeration.
∀f ∈ C ∃k ∈ IN ∀m ∈ IN ( k ≤ m → γ(f [k]) = γ(f [m]) ) is conversational appropriateness.
It prevents the human-computer communication from, so to speak, a Babylonian explosion of
terminology. Finally, semantic appropriateness with respect to this particular k for f ∈ C means
f ∈ P1

γ(f [k]).

Formally, any class C ⊆ R1 belongs to NUM∗, if and only if there exists some generator
γ ∈ P1 meeting the three conditions above. This is the brief summary:
∀f ∈ C ∀n ∈ IN ( γ(f [n])↓ ∧ ϕγ(f [n]) ∈ R1 ∧

P1
γ(f [n]) ⊆ R

1 ∧ f [n] ∈ [P1
γ(f [n])] )∧

∃k ∈ IN (∀m ∈ IN ( k ≤ m→ γ(f [k]) = γ(f [m]) ) ∧ f ∈ P1
γ(f [k])) )

NUM∗γ is the class of all functions f for which γ meets the above requirements.
γ may be seen as a possibly partial mapping from IN∗ to IN . γ(ε) denotes the default

enumeration. In case γ is a constant function, i.e. for all data it holds γ(f [n]) = γ(ε), the novel
concept NUM∗ coincides with the prior concept NUM.

If a function f ∈ C is subsequently presented by f [0], f [1], f [2], f [3], . . . , the generator γ
provides varying e�ective enumerations of spaces of hypotheses ϕγ(f [0]), ϕγ(f [1]), ϕγ(f [2]), . . . on
which the learner LIdByEnγ can perform identi�cation by enumeration.
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Every generator γ as above can be generalized to a generator of type EXarb.

γ(fX [n]) =


γ(ε) if (0, f(0)) 6� fX [n]
γ(f [m]) otherwise where m =

max {k | ∀x ≤ k ( (x, f(x)) � fX [n] )}
where (x, f(x)) � fX [n] means that an observation (x, f(x)) occurs in fX [n].

As a consequence, LIdByEnγ works on arbitrary arrangements of information. The main new
result of [ADF+ 2017], section 9.4, is NUM∗ = TOTAL. This is an answer to the research
question about how to learn consistently in case the problem class is beyond the limits of NUM.
Whensoever a learner is facing a learning problem from TOTAL, the present problem may be
solved by identi�cation by enumeration, but dynamically.

When a function f ∈ NUM∗γ is presented piece by piece, the learner LIdByEnγ 's generator
function γ provides changing spaces of hypotheses from time to time. In applications of business
intelligence as in [ADF+ 2017], presenting a new space of hypotheses may bring with it a certain
expansion of terminology. The more terminology is enriched, the more can be said explicitly.

This leads directly to another novel hierarchy (see �gure 3 above).

Figure 4: In�nite Hierarchy of Novel Learning Concepts Related to Earlier Established Concepts;
every ascending line indicates a proper inclusion of the lower family in the upper one

For any natural number k ∈ IN , a class of general recursive functions C ⊆ R1 belongs to
NUM k, if and only if there exists a generator of spaces of hypotheses γ with C ⊆ NUM∗γ and it
holds |{γ(f [n]) | f ∈ C ∧ n ∈ IN} ∪ {γ(ε)}|≤ k + 1.
Intuitively, C ∈ NUM 0 means that there is no need for the generator γ to provide any enumer-
ation di�erent from the default. Slightly generalized for any k ∈ IN , C ∈ NUM k means that γ
succeeds with no more than k newly generated spaces of hypotheses per function f ∈ C.

By de�nition, it holds NUM ⊆ NUM 0 ⊆ NUM 1 ⊆ NUM 2 ⊆ . . . NUM∗ and, trivially,
NUM = NUM 0. Figure 3 above visualizes a variety of statements about the variants of dynamic
identi�cation by enumeration in this in�nite chain of learning concepts such as (i) that the
variants form a proper in�nite hierarchy (ii) exhausting the space between NUM and TOTAL,
and (iii) that all variants NUM k, except NUM∗, are incomparable to FIN.

Within this paper, equalities such as NUM = NUM 0 and NUM∗ = TOTAL are seen trivial.
By way of illustration, let us brie�y discuss the second one.

First, NUM∗ ⊆ TOTAL is considered. Assume any class C ∈ NUM∗ and any function f ∈ C.



The Power and the Limitations of Concepts for Adaptivity and Personalization 11

When f is presented piecewise with respect to any ordering and if the generator function γ
provides spaces of hypotheses accordingly, identi�cation by enumeration does always return an
index of a general recursive function found in the current space of hypotheses. This demonstrates
NUM∗ ⊆ TOTAL directly.

Second, TOTAL ⊆ NUM∗ is considered. Assume any class C ∈ TOTAL and any learner
L ∈ P1 for C. There is a bit preposterous construction as follows. When L returns a hypothesis
on whatsoever data fX [n], this hypothesis L(fX [n]) is an index of a general recursive function
ϕL(fX [n]). The generator γ may be de�ned to always return some enumeration of the singleton
class {ϕL(fX [n])}. Because the learner terminates on every presentation of a function, γ does
change its spaces of hypotheses only �nitely many times. Due to this ridiculous choice of an enu-
meration, the procedure of identi�cation by enumeration does always �nd the same hypotheses
as L does. This demonstrates TOTAL ⊆ NUM∗ directly.

In contrast to mostly trivial equalities, the task to discriminate variants of learning concepts
is rather involved, as we will see in detail in section 7 below.

Within the �nal paragraphs of the present section, we focus the question whether or not
TOTAL characterizes the best we can do with computerized learning by means of identi�cation
by enumeration.

In business applications as investigated in [ADFJ 2017], a system's utterances about its
(intermediate) learning results shall be sound with the data occuring in the course of human-
system interaction. Fully de�ned hypotheses generated in accordance with the TOTAL learning
model allow for automatically checking consistency. The inclusions TOTAL ⊂ CONSarb ⊂ CONS
lead to the question for a further generalization of identi�cation by enumeration.

Theory of mind modeling and induction for purposes of business intelligence applications
shall not go beyond the limits of consistent learning. But could we possibly exhaust the problem
space CONS or CONSarb, at least, just by identi�cation by enumeration in suitably generated
more general spaces of hypotheses? How to generalize . . . ?

NUM∗ is repeated in a tabular form. A class C ⊆ R1 belongs to NUM∗, if and only if there
is a generator of hypotheses spaces γ ∈ P1 meeting this condition:

i ∀f ∈ C ∀X ∈ X ∀n ∈ IN
ii ( γ(fX [n])↓ ∧
iii ϕγ(fX [n]) ∈ R1 ∧
iv P1

γ(fX [n]) ⊆ R
1 ∧

v fX [n] ∈ [P1
γ(fX [n])] ∧

vi ∃k ∈ IN
vii ( ∀m ∈ IN
viii ( k ≤ m → γ(fX [k]) = γ(fX [m]) ) ∧
ix f ∈ P1

γ(fX [k]) ) )

The crucial lines are ii, iii, iv, v, viii, and ix. For identi�cation by enumeration, ii and iii are
inevitable, viii guarantees termination, and �nally ix guarantees correctness.

Aiming at a further generalization beyond the limits of dynamic identi�cation by enumeration
formalized by NUM∗, all that may be placed at disposal is condition iv above.
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6 Generalized Dynamic Identi�cation by Enumeration

The tabular de�nition of NUM∗ on the page before is taken as a basis of a slight modi�cation.
Recall that the goal is to learn by means of identi�cation by enumeration on every gener-

ated space of hypotheses ϕγ(fX [n]). The learner to be deployed on every space of hypotheses is
LIdByEnϕγ(fX [n])

, respectively.

Condition iv � which is part of operational appropriateness � is given up, i.e., a space of
hypotheses may contain objects that do not allow for consistency checks in arbitrary conditions.
Technically spoken, functions enumerated may be partial. To prevent LIdByEnϕγ(fX [n])

from running
into non-terminating computations, the following necessary and su�cient condition � logically
weaker than (iv) � is introduced.

∀s ∈ IN (ϕϕγ(fX [n])(s)X
[n] ≺ fX [n] →

∃r ∈ IN ( r < s ∧ ϕϕγ(fX [n])(r)X
[n] = fX [n] ) )

In this formula, the new symbol ≺ denotes the proper substring relation. For X, f, g and n,
it holds gX [n] � fX [n] exactly if g(xm)↓ implies f(xm)↓ and g(xm) = f(xm) for all m ≤ n. The
symbol ≺ denotes the irre�exive subset of the relation �.

When for a class C ⊆ R1 some generator γ exists that satis�es the following condition, C
belongs to a generalization of NUM∗ called NUM∗Xpart. The index letter X refers to arbitrary
arrangements of information and the string part indicates that enumerations may contain partial
functions.

i ∀f ∈ C ∀X ∈ X ∀n ∈ IN
ii ( γ(fX [n])↓ ∧
iii ϕγ(fX [n]) ∈ R1 ∧
iv.a ∀s ∈ IN
iv.b ( ϕϕγ(fX [n])(s)X

[n] ≺ fX [n] →
iv.c ∃r ∈ IN
iv.d ( r < s ∧ ϕϕγ(fX [n])(r)X

[n] = fX [n] ) ) ∧
v fX [n] ∈ [P1

γ(fX [n])] ∧
vi ∃k ∈ IN
vii ( ∀m ∈ IN
viii ( k ≤ m → γ(fX [k]) = γ(fX [m]) ) ∧
ix f ∈ P1

γ(fX [k]) ) )

Analogously, one may de�ne NUM∗part by restriction to the standard ordering of natural
numbers. The index X is dropped in the formula and in the notation of the family of function
classes. By de�nition, it holds NUM∗Xpart ⊆ NUM∗part.

As before, one may de�ne NUM k
Xpart and NUM

k
part by limiting the number of newly generated

spaces of hypotheses by a constant k.
Once again, the equalities are almost trivial. It holds NUM∗Xpart = CONSarb and NUM∗part =

CONS. This does immediately imply NUM∗Xpart ⊂ NUM∗part. But the discrimination of only
slightly varying variants of learning is involved.
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Before going into the details, �gure 4 below visualizes the entirety of the authors' novel results
on learning by means of dynamic and generalized dynamic identi�cation by enumeration. The
lighter boxes with dark inscriptions on the right side show the authors' original hierarchies in
comparison to conventional types of learning on the left side with white inscriptions.

The crude concepts NUM 0
Xpart and NUM

0
part de�ned by constant generators γ (see the preced-

ing tabular de�nition) are of only theoretical interest, because a practically relevant generation of
varying spaces of hypotheses in response to observations does not take place. They are dropped
in the following survey.

Figure 5: Two Hierarchies of Novel Learning Concepts Related to Earlier Established Concepts;
every ascending line indicates a proper inclusion of the lower problems family in the upper one.

Not to distract the reader's attention from the paper's original topic which is benchmarking
to discriminate closely related practical learning ideas, the authors con�ne themselves to just a
few remarks about the equality NUM∗part = CONS.

First, the statement NUM∗part ⊆ CONS is trivial, because the learner LIdByEnϕγ(f [n])
works always

consistently.

Second, for the statement CONS ⊆ NUM∗part works a somehow preposterous construction as
before. Assume any class C ∈ CONS with a related learner L. On any data f [n], the generator of
spaces of hypotheses γ may be de�ned to return an enumeration of the singleton class {ϕL(f [n])}.
Due to the consistency of the learner L, LIdByEnϕγ(f [n])

running on an enumeration of {ϕL(f [n])} �nds
exactly the hypothesis generated by L. Consequently, LIdByEnϕγ(f [n])

behaves exactly like L and, thus,
learns successfully.

Set inclusions such as NUM 1 ⊂ NUM 1
Xpart ⊂ NUM 1

part as well as incomparabilities such as
NUM 2

Xpart # NUM 1
part are considerably more involved.
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7 Benchmarking

Assume any two families of function classes as on display in �gure 5. For the sake of an abstract
treatment, we call them FFC1 and FFC2. Without loss of generality, assume FFC1 ⊆ FFC2.
To demonstrate FFC1 ⊂ FFC2, the key methodological idea is to construct a benchmark class
that re�ects the gist of the learning principle underlying the concept FFC2 as closely as possible.

7.1 Benchmark Classes

Recall the benchmark classes Cinit-supp, C�n-supp and C0
q-like introduced earlier. The utility of

the latter one for the demonstration of novel results on display in �gure 5 is discussed in the
following subsection. Furthermore, the concept is substantially advanced to allow for the demon-
stration of more involved results. Ckw-q-like is called the class of k-fold weakly quine-like functions.
In this context, weakness is that with every function in a class there are in�ntely many variations.

Ckw-q-like ={ f | f ∈ R1 ∧ ∃n1, . . . , nk ∈ IN (n1 < . . . < nk ∧ f(n1) = . . . = f(nk) = 0∧
ϕf(nk+1) ∈ R1 ∧ ∀x ∈ IN (x /∈ {n1, . . . , nk} → f(x) > 0 )∧
∀n, x ∈ IN (n ∈ {n1, . . . , nk−1} ∧ n < x ∧ ∀x′ ∈ IN (n < x′ ≤ x → f(x′) > 0 )
→ f [x] = ϕf(n+1)[x] )∧
∀∞x ∈ IN (nk + 1 < x → f(x) = ϕf(nk+1)(x) ) ) }

C≤kw-q-like =
⋃k
i=1C

i
w-q-like

C∗w-q-like =
⋃∞
i=1C

i
w-q-like

C∗w-q-like and its subclasses represent prototypical ideas of benchmarking. Learning functions
in C∗w-q-like on the standard ordering X0 = 0, 1, 2, . . . is trivial. The di�culties of learning on
arbitrary orderings are exempli�ed in the sequel. But �rst, in �gure 6, it follows an illustration5.

Figure 6: Visualization of the graph of a function in C∗w-q-like with emphasis on indicators

Observations of the form (ni, 0) are indicators announcing, so to speak, key information to
come on input point ni+1 (green bars in the function graph of �g. 6). The key value f(ni+1)
names a function ϕf(ni+1) that correctly describes the target function up to the next indicator.
If nk is the last indicator, ϕf(nk+1) equals the target function up to �nitely many exceptions.

5 This is a slide from the �rst author's lecture on �Learning Systems� at Erfurt University of Technology in the
Summer term 2018. In this way the authors demonstrate the uptake of novel research results in regular teaching.
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7.2 Benchmarking Exempli�ed

By way of illustration, the authors use benchmarking to characterize the power and the limita-
tions of their (i) dynamic and (ii) generalized dynamic variations of identi�cation by enumeration.

The long-known benchmark class C0
q-like (see section 5.2 above) belongs to FIN, but not to

NUM = NUM 0. The inclusion C0
q-like ∈ NUM 1 is rather obvious and illustrates why dynamic

identi�cation by enumeration leads to an in�nite hierarchy. The authors brie�y provide a sketch.

Demonstration of Learning by means of Dynamic Identi�cation by Enumeration

For learning according to the concept NUM 1, one may take an enumeration of Cinit-supp as the
initial default.

How to de�ne a generator γ is obvious. Whenever a �rst observation of the form (0, f(0)) is
made, γ abandons the default space of hypotheses and generates an enumeration of the singleton
class {ϕf(0)}. Trivially, LIdByEnϕγ(f [0])

is able to learn ϕf(0) which is the only element of that class.
This rediculously simple case demonstrates that the key to learning lies in the appropriate space
of hypotheses.

The basic idea of learning by means of dynamic identi�cation by enumeration demonstrated
above works as well for the benchmark class C0

w-q-like. The only di�erence is that, in response
to an observation (0, f(0)), γ generates an enumeration of all �nite variations (on inputs greater
than 0) of ϕf(0). Thus, C

0
w-q-like ∈ NUM 1. The understanding of NUM = NUM 0 ⊂ NUM 1 is a

�rst step toward understanding the ini�nite hierarchies on display in �gure 5.
The proper set inculsion claimed relies on C0

w-q-like /∈ NUM 0. This follows from the facts

(i) that C0
w-q-like contains C

0
q-like and (ii) C0

q-like /∈ NUM 0 which is folklore in inductive inference
(see, e.g., [JB 1981] or [AS 1983]).

Demonstration of the Power of Generalizing Dynamic Identi�cation by Enumeration

The idea to further generalize dynamic identi�cation by enumeration provides more learning
power as may be demonstrated by means of the benchmark class C0

q-like. In contrast to the

negative result C0
q-like /∈ NUM 0, it holds C0

q-like ∈ NUM 0
part.

The following de�nition of a sequence of functions ψn leads directly to a suitable enumeration.

ψn(x) =

{
n if x = 0
ϕn(x) if x > 0

By Kleene's s-m-n theorem, there exists an enumeration h ∈ R1 such that for all indices n ∈ IN
it holds ψn = ϕh(n). Apparently, C

0
q-like = P1

h ∩R1 ⊂ P1
h = {ϕh(n)}n∈IN .

Every function in P1
h is de�ned on argument 0 and any two di�erent functions have di�erent

values on input 0. Therefore, when (0, f(0)) is observed, identi�cation by enumeration on h �nds
the hypothesis ϕf(0) correctly. Therefore, LIdByEnh learns every function from C0

q-like without any

need to change the space of hypotheses. This completes the demonstration of C0
q-like ∈ NUM 0

part.

The two separations NUM 0 ⊂ NUM 1 and NUM 0 ⊂ NUM 0
part by means of the benchmark class

C0
q-like are prototypical cases of benchmarking. In the present report, they may be seen as a

warming up for the more interesting and complex case studied in the sequel based on C∗w-q-like.
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The Importance of Ordering for Generalized Dynamic Identi�cation by Enumeration

The �nal part of section 7 is dedicated to a study of the importance of ordering observations in
generalized dynamic identi�cation by enumeration.

From the benchmark class C∗w-q-like introduced before, the subclass C≤2
w-q-like will be su�cient

to demonstrate the following fact:

NUM 2
part \ NUM∞Xpart 6= ∅

In learning by means of generalized dynamic identi�cation by enumeration, to give up the
requirement of a �xed ordering of observations can not be compensated by arbitrarily many more
� even trillions � of changes of spaces of hypotheses.

Proof of C≤2
w-q-like ∈ NUM

2
part

An identi�cation by enumeration learner for C≤2
w-q-like may take any enumeration of C�n-supp as

the initial default. As long as all function values observed are greater than 0, the learner searches
the default enumeration.

As soon as an argument-value pair (n, 0) is observed, the learner gets ready for a change of the
space of hypotheses. Nevertheless, its current hypothis is still found in the default enumeration.

When (n+1, f(n+1)) is available, the generator γ computes an enumeration of the class of
all �nite variations of the, so to speak, skeleton function {ϕf(n+1)}. One may assume that the
skeleton function occurs �rst in this enumeration. There are only variations enumerated that
di�er from the skeleton at input points greater than n+1 and that take values greater than 0.
The generator function γ sticks to this enumeration as long as all values observed further on are
greater than 0, i.e., no second indicator occurs.

In this case, convergence and correctness is obvious, because (i) the skeleton function ϕf(n+1)

is consistent with f [n+1] and (ii) if variations are observed � what may take place only �nitely
many times � another consistent function is contained in the enumeration.

Proof of C≤2
w-q-like /∈ NUM

∞
Xpart

To prove C≤2
w-q-like /∈ NUM∞Xpart, the authors demonstrate a proof by contradiction. If C≤2

w-q-like

were in NUM∞Xpart, there would be a consistent learner L able to learn every function of the class

C≤2
w-q-like on arbitrary arrangements of data.
The idea of the proof consists in the e�ective de�nition of a sequence of functions {ψy}y=1,2,3,...

such that (i) there is a function ψn which belongs to C≤2
w-q-like and (ii) the assumed learner is

changing its hypotheses on ψn in�nitely many times.
Choose any number m ≥ 2. Imagine the initial segment of functions constantly equal to 1

up to point m−2 and equal to 0 at point m−1 being an indicator. For every y ∈ IN , one de�nes

ψy(x) =



1 if x < m− 1
0 if x = m− 1 ⇐= the indicator

y if x = m
u if x−m ≡ 0mod3 ∧ exactly ψy

X∆ [x−3] is de�ned so far ∧
u = µv[ 0 < v ∧ L(ψy[x−3]) 6= L(ψy[x−3]◦(x, v)) ]

ψy(x+3−d)) if x−m ≡ dmod3,where d 6= 0 otherwise
extending this initial segment begining at point m. ◦ denotes the concatenation of (lists of)
observations. X∆ ∈ X denotes 0,1,. . . ,m,m+3,m+2,m+1,m+6,m+5,m+4,m+9,m+8,m+7, . . . .
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The process of subsequently de�ning every ψy is illustrated by means of the following �gure 7
assembled from the authors' ISIP 2018 presentation slides.

Figure 7: Stepwise E�ective De�nition of ψy in Dependence on the Assumed Consistent Learner;
6 Subsequent Slides from the Authors' Presentation at ISIP 2018, Fukuoka, Japan, in May 2018

The light blue boxes on the slides represent values of the function ψy under construction.
The construction over time is visualized horizontally. Initially, the �rst values on arguments from
0 to m−2 are set to 1. This is visualized by a pile of boxes on the left. At position m−1 there
occurs an indicator. This is a next step of construction and, therefore, it is shown slightly on the
right of the pile of boxes. In the next step, it follows value y on argument m, i.e., ψy(m) = y.

After the occurence of a �rst indicator at position m−1, the turn-based construction proceeds
on X∆ in a uniform way by de�ning triplets of values on the argumentsm+3,m+2,m+1, followed
by m+6,m+5,m+4, then m+9,m+8,m+7, and so on.

The assignment on values to triplet elements begins on the second slide. The third slide
shows the �rst complete triplet. The fourth and the �fth slide illustrate the emergence of the
second triplet. Finally, the sixth slide in the lower right corner of the �gure 7 is intended to give
an impression of the overall in�nite process.

When by the end of some turn, ψy is de�ned up to some point k, the next argument in focus
is k+3. For any value u there is a value z such that the class C≤2

w-q-like contains functions f with
four critical properties. First, f [k] = ψy[k]. Second, f(k+1) = 0, i.e., k+1 is an indicator. Third,
f(k+2) = z and ϕz = f . And fourth, f(k+3) = u. Appendix B demonstrates this crucial fact.
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Consequently, when a function like ψy is observed up to point k, any value u may occur
at point k+3 and, thus, the learner L must be able to generate a hypothesis when the data
(k+3, u) are coming in next. In particular, because L learns consistently, for di�erent values u,
the hypotheses must be mutually di�erent to guarantee consistency in every case.

This justi�es the line u = µv[ 0 < v ∧ L(ψy[x−3]) 6= L(ψy[x−3]◦(x, v)) ] when de�ning ψy.
u is determined and may be computed e�ectively. It holds L(ψy[x−3]) 6= L(ψy[x−3]◦(x, u)).
When in the current turn u is found, ψy is extended by assigning the value u �rst to ψy(k+3)
and then to ψy(k+2) and ψy(k+1).

It follows the next turn, and so on. For every y ∈ IN , ψy is e�ectively de�ned in a uniform
way depending on the parameter y exclusively. The learner L is used as a subroutine.

By Kleene's s-m-n theorem, there exists a total recursive function c ∈ R1 � one may see c
as a compiler that maps the enumeration {ψy}y∈IN into the underlying Gödel numbering ϕ �
such that ψy = ϕc(y) for all y ∈ IN .

By the recursion theorem, the compiler c has a �xed point z satisfying ϕc(z) = ϕz. Because
of ψz = ϕc(z) = ϕz, this function is of a particular interest. It has exactly one indicator at point
m−1 and its value at point m is an index of this function. Consequently, it belongs to the
benchmark class C≤2

w-q-like.

Allegedly, L is a learner for all functions of C≤2
w-q-like. But when ψ

z is presented in the order

X∆, this learner changes its hypothesis in�nitely many times. This disproves the assumption
and, thus, demonstrates C≤2

w-q-like /∈ NUM∞Xpart. The proof is completed.

All the separations of problem classes on display in �gure 5, be it proper set inclusions or incom-
parabilities, can be demonstrated by means of suitable benchmark classes as exempli�ed above.

8 Summary & Conclusions

Due to its simplicity, to the clarity, and to the apparent relevance of a few key results, early work
in inductive inference such as [Gol 1967] attracted an enormous attention in cognitive science
[Joh 2004].

In contrast to Gold's investigation of learning formal languages, the learning of computable
functions is even simpler and special cases such as polynomial interpolation are already well-
understood for more than a century [Run 1901].

The theory of recursive functions and e�ective computability [Rj 1967] provides a collection
of deep and sometimes seemingly abstruse results such as the recursion theorem, Rice's theo-
rem, and certain consequences thereof such as the existence of self-describing functions named
�quines� in software engineering. The latter phenomenon has challenged software practitioners
who found out that all the deep theoretical results really have corresponding phenomena in
software engineering practice [Tho 1999].

The above-mentioned state of the art encouraged the authors of the present report to map
their problems of learning theories of mind from observations of human-computer interaction
to the much simpler �eld of learning general recursive functions. The focus of the authors'
investigations is on a single (!) inductive learning mechanism that solves all their learning
problems provided there are spaces of hypotheses generated and presented appropriately. This
novel principle of technology may be easily mapped to inductive inference of recursive functions.
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8.1 Theory

The manuscript introduces the novel concepts NUM∗part and NUM∗Xpart and contributes two more
in�nite hierarchies on display in �gure 5 on the right.

The key idea motivated by the authors' application projects (see also section 8.2) consists in
focussing only a single (!) simple learning mechanism which is, so to speak, parametrized. The
learning mechanism's parameters are spaces of hypotheses. The theoretical approach has been
studied almost exactly 40 years ago in [Jan 1978] where the term strategic operator is coined and
identi�cation by enumeration as dealt with in the present report occurs as a speci�c case of a
consistent strategic operator (ibid., page 489). To paraphrase the authors' intention, they aim at
uniform learning [Zil 2003].

This work relates to [Wie 1991] and [Köt 2014]. Wiehagen expresses the belief that every
problem of inductive inference can be solved by �an enumerative inference strategy� ([Wie 1991],
p. 198), though the concept of an enumerative inference strategy remains unspeci�ed (p. 199).
[Köt 2014] provides a solution to Wiehagen's thesis for a variety of criteria. Kötzing's approach
(ibid., De�nition 2, p. 499) is weaker than the present one, because we are focussing a single
learner LIdbyEn running on varying enumerations, even varying in the course of solving a single
learning problem. Kötzing, in contrast, takes varying learners into account, but requires a unique
underlying enumeration.

8.2 Practice

The authors' papers on practical experiments in the areas of player modeling [JSS 2016] and data
analysis [ADFJ 2017] are continued by the introduction and investigation of NUM∗ [ADF+ 2017]
and of the in�nite hierarchy exhausting the gap from NUM to NUM∗ [AJ 2018].

In the latter one, which is a book chapter on data mining, the authors express the opinion that
it should be possible �to generalize their recent approach to dynamic identi�cation by enumeration
even further. This requires a careful easing of one or more of the requirements named operational
appropriateness, conversational appropriateness, and semantic appropriateness. The related open
questions need some more research e�ort.� (ibid., p. 61). With the results in the present report,
the work is done.

The results explicate that � in practical applications � theory of mind induction does not
so much depend on learning theorists and their sophisticated algorithms of high complexity, but
on domain experts and their ability to express what they are looking for, i.e., spaces of hypotheses.

The authors' conference paper [ADFJ 2017] provides the discussion of an application case
in business intelligence. Chapter 3 of [Jan 2016a] contains an even more detailed discussion
supported by an appendix of 9 session screenshots.

Based on the recent results, the authors are able improve the system's intelligence by putting
more emphasis on the internal generation of logical expressions that formalize domain knowledge
and serve as spaces of hypotheses.

Future applications will teach us how to interpret human users' actions in human-computer
interactive problem solving toward the generation of useful internal knowledge representations.
A variety of challenges will occur such as, e.g., the usage of ontologies and of other knowledge
sources for the ad hoc generation of system knowledge.
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Appendix A: The Benchmark Class C≤2w-q-like

Readers less familiar with the theory of recursive functions and e�ective computability [Rj 1967]
might have their doubts about constructions such as C≤2

w-q-like. This appendix provides a proof
that this benchmark class does really exist and that it contains in�nitely many functions.

The following simple construction works for every n ∈ IN seen as a potential �rst indicator
and, consequently, results in in�nitely many elements of C≤2

w-q-like.

χy1(x) =


1 if x < n
0 if x = n
y if x = n+ 1
α(x) otherwise

In this de�nition, α is an arbitrarily �xed total recursive function that computes exclusively
values greater than 0. The choice of α allows for in�nitely many variations of this approach.

When α is �xed (for simplicity, think of α as the one function that is constantly equal to 1),
the de�nition of χy1 does e�ectively depend on y only.

By Kleene's s-m-n theorem, there exists an e�ective enumeration h1 ∈ R1 such that it holds
ϕh1(y)(x) = χy1(x) for all x, y ∈ IN .

By the recursion theorem, h1 has a �xed point z � in fact, there are always in�nitely many
�xed points; another aspect that reveals the existence of in�nitely many variations � satisfying
the equality ϕh1(z) = ϕz. Recall that ϕh1(z) = χz implies χz1 = ϕz.

Consequently, for any function α and for any �xed point z, the point n is an indicator within
χz1 and it holds χz1 ∈ C1

w-q-like ⊂ C
≤2
w-q-like. Furthermore, χz1 is a skeleton function and all its �nite

variations past point n+1 belong to the class of interest.

Appendix B: On Extensions of ψy[k]

There is a critical discussion in section 7.2 by the end of page 17. The function ψy under
construction is de�ned up to some point k. The initial segment ψy[k] is given. The construction
proceeds by assigning a value for the argument k+3. For this purpose, it is assumed that the
learner builds a hypothesis on potential observations such as ψy[k]◦ (k+3, 1) and ψy[k]◦ (k+3, 2).
This assumption needs a justi�cation.

Based on ψy[k], one may de�ne two sequences of functions {χz1}z∈IN and {χz2}z∈IN both
extending ψy[k], i.e. χz1[k] = χz2[k] = ψy[k] as follows. One de�nes (ii) χz1(k+1) = χz2(k+1) = 0,
and (iii) χz1(k+2) = χz2(k+2) = z. For values equal to or larger than k+3, both function sequences
are distinguished. All functions {χz1}z∈IN become constantly equal to 1 whereas the functions
{χz2}z∈IN are constantly equal to the value 2.

Because both constructions are e�ective and due to Kleene' s-m-n theorem, there are com-
pilers h1 and h2 � for brevity, we use the notation hb where b means 1 or 2, resp. � satisfying
ϕhb(z) = χzb . According to the recursion theorem, hb has a �xed point zb such that it holds
ϕhb(zb) = ϕzb . For every �xed point, the function ϕzb = χzbb has a second indicator at point k+1
and its value at point k+2 is a correct index. Consequently, for all �xed points z1 and z2, the
functions χz11 and χz2b 2, resp., belong to the benchmark class C≤2

w-q-like. At point k+3, the values
1 and 2, resp., occur.

This implies that a learner for the benchmark class under consideration must be de�ned both
on ψy[k] ◦ (k+3, 1) and ψy[k] ◦ (k+3, 2). This completes the necessary justi�cation.


